Discovering Geometry using GeoGebra

Sections:

1. The protractor axiom
2. Vertically opposite angles

3. Isosceles triangles
4. Alternate angles
5. Angles in a triangle
6. Corresponding angles
7. Exterior angles
8. Opposite sides and angles in a parallelogram
9. Diagonals in a parallelogram

GeaGebra

Student instructions:

- Print this workbook
- Open the supporting dynamic software file for each section and use it to discover answers the questions
- Fill in your answers in this workbook

Protractor Axiom
 Student Activity Axiom

Use in connection with interactive file "Axiom"

1. Drag the slider to the right what do you notice?
2. Drag the slider to the left. What do you notice?
3. Drag the slider to make the measure of the angle $A B C=45^{\circ}$. What do you think is the measure of the reflex angle $A B C$? \qquad
4. Drag the slider to make the measure of the angle $\mathrm{ABC}=180^{\circ}$, notice that text: "The angle ABC is NOT a straight angle" disappears. What can you conclude?
5. Drag the slider to make the measure of the angle $\mathrm{ABC}=90^{\circ}$. What is the name given to an angle of this measure?
6. When you drag the slider along the full line from left to right, how many degrees will the point C have travelled? \qquad
7. When you drag the slider to make the angle $A B C=180^{\circ}$. What can we say about the points A, B and C ? \qquad
8. Drag the slider to make the measure of the angle $\mathrm{ABC}=120^{\circ}$. Give a name for this type of angle. \qquad
9. Drag the slider to make the measure of the angle $\mathrm{ABC}=38^{\circ}$. Give a name for this type of angle. \qquad

Student Activity Theorem 1

Use in connection with interactive file "Theorem 1"

1. Drag the point C to make the measure of angle CBA equal to 90°. What do you notice about the measure of the angle EBD? \qquad
2. When the measure of the angle CBA is 90° What do notice about the measures of the angles $E B D, A B E$ and $C B D$.
3. What conclusion can be drawn from adding all the angles in question 2 ?
4. Drag the point C to make the measure of the angle CBD equal to 70°. Write down the measures of the angles $A B E, A B C$ and EBD.
$\mathrm{ABE}=$ \qquad , $\mathrm{ABC}=$ \qquad and EBD = \qquad
5. Drag the point C to make the measure of the angle $A B E 60^{\circ}$. Is the measure of the angle CBD the same? \qquad
What is the measure of the angle $A B C$? \qquad Is the measure of the angle EBD equal to the measure of the angle $A B C$? \qquad
6. Drag the point C to make the measure of the angle $A B C 130^{\circ}$. Is the measure of the angle EBD the same? \qquad
What is the measure of the angle ABE? \qquad Is the measure of the angle CBD equal to the measure of the angle $A B E$? \qquad
7. By dragging the point C make the measure of the angle $A B C 93^{\circ}$. When you add the measure of angle $A B C$ to the measure of angle CBD what answer do you get? \qquad
What does this tell you about the points A, B and D ? \qquad

Student Activity Theorem 2

Use in connection with interactive file "Theorem 2"

1. Drag the point D to make the measure of the angle DEF 50°.

What is the measure of the angle DFE? \qquad . Are the two angles equal in measure? \qquad

Write down the lengths of the sides DE and DF. Are these lengths equal? \qquad
2. Drag the point D to make the length of the side $D E=4$.

What is the length of the side DF? \qquad _.

Are the two sides equal? \qquad
Write down the measures of the angles DEF and DFE.
DEF = \qquad , DFE = \qquad
Are the measures of the two angles equal? \qquad
3. Drag the point D to make the measure of the angle $D F E=70^{\circ}$. What is the measure of the angle DEF? \qquad . Are the two angles equal in measure? \qquad
Write down the lengths of the sides DF and DE. Are these lengths equal? \qquad
4. Drag the point D to make the length of the side $D F=8$.

What is the length of the side DE? \qquad .
Are the two sides equal? \qquad
Write down the measures of the angles DFE and DEF.
DFE = \qquad , DEF = \qquad
Are the measures of the two angles equal? \qquad
5. What conclusion can be drawn from the answers in questions $1,2,3$, and 4 when (i) the sides are equal:

Student Activity Theorem 3

Use in connection with interactive file "Theorem 3"

1. What do you notice about the measure of the angles LOP and MPO?

Drag the point H to make the measure of the angle LOP $=100^{\circ}$.
Write down the measure of the angle MPO. MPO = \qquad
Are the measures of the two angles LOP and MPO equal in measure? \qquad .
2. Drag the point H to make the measure of the angle $\mathrm{MPO}=73^{\circ}$. What is the measure of the angle LOP? \qquad .
Are the measures of the two angles MPO and LOP equal? \qquad
3. The angles LOP and MOP are called ALTERNATE angles. Drag the point H to various positions. Are these angles LOP and MOP always equal? \qquad
4. Click on Tick Box 1 to show the wording of this theorem. Are the lines a and b parallel in this case? \qquad
5. Name another pair of alternate angles in the diagram.
(i) \qquad (ii) \qquad
Write down the measure of these angles (i) \qquad (ii) \qquad
Are the measures of these angles equal? \qquad
6. Click on Tick Box 2 to show the wording of the converse of this theorem.

Student Activity Theorem 4

Use in connection with interactive file "Theorem 4"

Give all answers correct to the nearest degree.

1. What shape is $A B C$? \qquad
2. How many sides make up the shape $A B C$? \qquad
3. Move the point B, so that the angle $A B C$ equals 58°. What are the measures of the angle $B C A$ and $B A C . \quad B C A=$ \qquad . $B A C=$ \qquad -.
4. When angle $A B C$ equals 58° what is the sum of the measures of the angles $A B C, B C A$ and BAC? Measure of $A B C+$ Measure of BCA + Measure of BAC $=$ \qquad
5. Move the point C, so that the angle $B C A$ equals 60°. Read the values of the angle $A B C$ and $B A C$. $A B C=$ \qquad . $B A C=$ \qquad .
6. When the angle $B C A$ equals 60°, what is the sum of the values of the angles $B C A, A B C$ and BAC? Measure of $A B C+$ Measure of BCA + Measure of BAC $=$ \qquad
7. Click on the Tick Box on the interactive file to reveal the wording of this theorem. Did you come to this conclusion? \qquad -.
8. What is the measure of the angle $A B C$ in each of the following triangles?

Student Activity Theorem 5

Use in connection with interactive file "Theorem 5"

1. What do you notice about the measure of the angles

LOH and GPO? \qquad
Drag the point H to make the measure of the angle $\mathrm{LOH}=30^{\circ}$.
Write down the measure of the angle GPO. GPO = \qquad
Are the measures of the two angles LOH and GPO equal in measure? \qquad .
2. Drag the point H to make the measure of the angle $\mathrm{LOH}=100^{\circ}$.

What is the measure of the angle GPO? \qquad .
Are the measures of the two angles LOH and GPO equal? \qquad
3. The angles LOH and GOP are called CORRESPONDING angles. Drag the point H to various positions. Are these angles LOH and GOP always equal? \qquad
4. Click on Tick Box to show the wording of this theorem. Are the lines a and b parallel? \qquad
5. Name another pair of corresponding angles in the diagram.
(i) \qquad (ii) \qquad
Write down the measure of these angles (i) \qquad (ii) \qquad
Are the measures of these angles equal? \qquad

Student Activity Theorem 6

Use in connection with interactive file "Theorem 6"

Give all answers correct to the nearest degree.

1. Drag the point A to make the measure of the angle $E B A=130^{\circ}$

What is the measure of the angle BAC? \qquad .
What is the measure of the angle BCA ? \qquad
What is the sum of the measures of the angles BAC and BCA?
Measure of the angle BAC + Measure of BCA = \qquad
Is this sum equal to the measure of the angle EBA? \qquad
2. Drag the point A to make the measure of the angle $D C A=100^{\circ}$.

What is the measure of the angle CBA? \qquad .
What is the measure of the angle CAB? \qquad .
What is the sum of the measures of the angles CBA and CAB?
Measure of the angle CBA + Measure of CAB = \qquad
Is this sum equal to the measure of the angle DCA? \qquad
3. Drag the point A to make the measure of the angle $F A B=110^{\circ}$.

What is the measure of the angle $A B C$? \qquad .
What is the measure of the angle ACB? \qquad .

What is the sum of the measures of the angles $A B C$ and $A C B$? \qquad
Measure of the angle $A B C+$ Measure of $A C B=$ \qquad
Is this sum equal to the measure of the angle $F A B$? \qquad
4. Drag the point A to make the measure of the angle $D C A=84^{\circ}$.

What is the measure of the angle CBA? \qquad .
What is the measure of the angle CAB? \qquad .
What is the sum of the measures of the angles CBA and CAB? \qquad
Measure of the angle CBA + Measure of CAB = \qquad
Is this sum equal to the measure of the angle DCA? \qquad

Student Activity Theorem 9

1. In the diagram $A B C D$ is a parallelogram. Drag the point A to the right and then write down the lengths of the following line segments
[AB] = \qquad
[DC] = \qquad
[DA] = \qquad
[BC] = \qquad
What can be concluded from these measurements?
2. In the diagram $A B C D$ is a parallelogram. Drag the point D to the left and then write down the lengths of the following line segments
[AB] = \qquad
[DC] = \qquad
[DA] = \qquad
[BC] = \qquad
What can be concluded from these measurements?
3. In the diagram $A B C D$ is a parallelogram. Drag the point A to the right and then write down the measures of the following angles
DAB = \qquad
DCB $=$ \qquad
ADC $=$ \qquad
ABC = \qquad
What can be concluded from these measurements?

Student Activity Theorem 10

Use in connection with interactive file "Theorem 10"

1. $A B C D$ is a parallelogram. Drag the point D to the left and then write down the lengths of the following line segments
[AE] = \qquad
[EC] = \qquad
[DE] = \qquad
[EB] = \qquad
Is the length of $[A E]=$ the length of $[E C]$? \qquad
Is the length of $[D E]=$ the length of $[E B]$? \qquad
2. $A B C D$ is a parallelogram. Drag the point A to the right and then write down the lengths of the following line segments
[AE] = \qquad
[EC] = \qquad
[DE] = \qquad
[EB] = \qquad
Is the length of $[A E]=$ the length of $[E C]$? \qquad
Is the length of $[D E]=$ the length of $[E B]$? \qquad
3. $A B C D$ is a parallelogram. Drag the point A to make the length of $[A E]=3$

Is the length of [AE] = [EC]? \qquad
Is the length of $[D E]=[E B]$? \qquad
4. Write down in your own words what conclusion can be drawn from the answers to questions 1, 2 and 3 \qquad
5. Click on the Tick Box on the interactive file to reveal the wording of this theorem.

Did you come to this conclusion? \qquad .

